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Experimental data on the Reynolds number dependence of the area-averaged
turbulent kinetic energy K and dissipation rate E are presented. It is shown that
while in the interval ReD > 105 the total kinetic energy scales with friction velocity
(K/u2

∗ =const), a new scaling law K/〈U〉2 ∝ K/(u2
∗Reθ

D) = const (θ ≈ 1/4) has been
discovered in the interval ReD < 105. It is argued that this transition is responsible
for the well-known change in the scaling behaviour of the friction factor observed in
pipe and channels flows at ReD ≈ 105.

1. Introduction
Experimental studies of the friction factor λ in turbulent pipe and channel flows

have revealed two distinct intervals: λ ∝ Re
−1/4
D proposed by Blasius for ReD < 105

and λ ∝ Re−θ
D for ReD > 105 Schlichting (1968). For a pipe, λ= 8τw/ρ〈U〉2 ≡ 8u2

∗/〈U〉2,
where τw is the wall friction, ReD = 〈U〉D/ν, 〈U〉 is the area-averaged or bulk velocity,
D is the pipe diameter (=2R), and ρ and ν are the fluid density and kinematic viscosity,
respectively. Today’s consensus on the high-Reynolds-number asymptotics has θ → 0
so that

1√
λ

∝ lnReD. (1.1)

As to the lower-Reynolds-number Blasius scaling, it has been regarded mostly as
a convenient empirical curve fit (Nagib, Chauhan & Monkiewitz 2007). Recently,
however, this scaling has been derived from an interesting model based on assumed
coherent structures and Kolmogorov energy spectrum in the sublayer (Gioia &
Chakraborty 2006). One problem with this approach is that it gives the Blasius scaling
for all turbulent flow Reynolds numbers, which contradicts the experimental data.
Another problem is that Kolmogorov’s spectrum, or indeed any other algebraically
decreasing energy spectrum, has not been observed in the sublayer, and it is
well established that the dynamics of turbulence production in the sublayer are
intermittency-dominated (Lee, Yeo & Choi 2004). Here we take a different approach
and examine the proposition that the change in scaling reflects a transition from one
state of turbulence to another.
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Figure 1. Distribution of the dissipation scale in a fully developed turbulent pipe flow.
�, ReD = 25 × 103; �, 45 × 103; �, 65 × 103; �, 80 × 103; ◦, 150 × 103.

We expect that the magnitude of a scaling exponent reflects the basic physical
mechanisms and symmetries of a problem, and therefore the transition from one
scaling exponent to another is often accompanied by changes in the basic properties
of a system. A good example is given by the transition from ‘soft’ to ‘hard’ turbulence
in a convection cell. It has been shown that above a critical Rayleigh number, a
new production mechanism emerges: the turbulence is generated by thermal plumes
emitted by unstable boundary layers into the bulk of a Bénard convection cell.
This effect is responsible for the change observed in the scaling exponent α in the
Nusselt–Rayleigh number relationship Nu ∝ Raα .

In this paper, searching for a transition from one state of turbulence to another, we
first examine the Reynolds number dependence of global turbulence characteristics
such as K , the streamwise component of the mean turbulent kinetic energy u′2/2
averaged over the cross-sectional area of the pipe. That is,

K =
1

πR2

∫ R

0

(
1

2
u′2

)
2πr dr, (1.2)

where r = R − y, and y is the wall-normal distance. In our notation, u′, v′, and w′ are
the streamwise, wall-normal and spanwise velocity fluctuations, respectively. We will
demonstrate by experiment and analysis that (i) in the high-Reynolds-number regime
where ReD > 105, K ∝ u2

∗, and (ii) in the Blasius regime where ReD � 105, K ∝ 〈U〉2

and K/(u2
∗Re1/4) ≈ constant. It is then argued that this transition is responsible for

the Blasius scaling behaviour of skin friction observed in pipe and channel flows for
ReD � 105.

2. Experimental results
The behaviour of the dissipation scale η+ = ηu∗/ν for pipe flow Reynolds numbers

in the range 25 × 103 � ReD � 150 × 103 is shown in figure 1, where y+ = yu∗/ν.
The dissipation rate was calculated by integrating the dissipation spectrum that
was estimated from the streamwise power spectrum using the one-dimensional
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Figure 2. Reynolds number dependence of the normalized kinetic energy K . �, Hultmark
et al. (2010); �, Morrison et al. (2004). Data shown as K/〈U〉2 (a) and as K/u2

∗ (b).

approximation, as described by Bailey et al. (2009). For details of the experiment,
see Hultmark, Bailey & Smits (2010). We see that within the sublayer where
0 < y+ <y+

s ≈ 50, η+(y) = const ( ≈ 2), independent of y+ and ReD , and so

E ∝ u4
∗

ν
. (2.1)

This result is consistent with the expression for the locally fluctuating dissipation scale
E ≈ (δηu)4/ν derived and tested in numerical experiments on low-Reynolds-number
flows by Schumacher, Sreenivasan & Yakhot (2007), if δηu ≡ (u(x +η)−u(x))rms = u∗.
Also in the sublayer (y � ys),

η

D
=

η+

2R∗
≈ const

R∗
,

where R∗ = Ru∗/ν. Because this result is independent of y, it is valid at y = ys .
Furthermore, because the width of the sublayer is proportional to the viscous scale
ν/u∗, and therefore proportional to the dissipation scale η, we have

η(y) ∝ ys ∝ DR−1
∗ . (2.2)

This result differs from the classic Kolmogorov estimate η ∝ DRe−3/4 proposed for
homogeneous and isotropic turbulence. Interestingly, for a given Reynolds number,
the local value of the dissipation scale in the sublayer depends on the diameter of the
pipe, a global property. It will become clear that this non-trivial feature is related to
the coherent motions controlling turbulence production. For the Reynolds numbers
shown in figure 1 (R∗ = 700, 1100, 1500, 1900, 3300), η(y+) collapses onto a single
curve for y+ < 200, 500, 700, 900, 1400, respectively, that is, the curves collapse in the
region y/R < 0.5 for ReD > 25×103, which points to universality of the dimensionless
function E+ = Eν/u4

∗.
In figure 2, the area-averaged mean kinetic energy K defined by (1.2), normalized

by 〈U〉 and u∗, is shown as a function of Reynolds number. All measurements were
taken in the Princeton Superpipe described by Zagarola & Smits (1998). The data for
ReD � 150 × 103 are taken from Hultmark et al. (2010), and the higher-Reynolds-
number data were taken from Morrison et al. (2004). Note that the high-Reynolds-
number data of Morrison et al. (2004) could be subject to filtering effects due to
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Figure 3. The scaled mean kinetic energy K/u2
∗Re

1/4
D as a function of Reynolds number. �,

Hultmark et al. (2010); �, Morrison et al. (2004).

inadequate spatial resolution of the measurement probe. However, as observed by
Hutchins et al. (2009), this filtering effect has the greatest impact near the wall where
the length scales of the turbulence are small, and reduces further from the wall.
Thus, these effects have little impact on the integrated statistics. For example, this
filtering will be worst at the highest Reynolds number of Morrison et al. (2004), but
at this Reynolds number, the region below y+ < 1000, where such filtering effects are
expected to be important, represents only 2 % of the total integral.

In figure 2, a previously unreported transition at ReD ≈ 105 from K ∝ 〈U〉2 to
K ∝ u2

∗ is clearly seen. To obtain the scaling exponent θ , in figure 3 we show that
K/(u2

∗Re1/4) ≈ const in the low-Reynolds-number interval. Together with K ∝ 〈U〉2,
it follows that in the range ReD < 105,

λ =
8u2

∗
〈U〉2

∝ u2
∗

K
∝ Reθ

D (2.3)

with θ ≈ −1/4, as in the classical Blasius fit.
In figure 4, we show the compilation of experimental data on Kv and Kk as a

function of ReD , where Kv is the wall-normal component of the mean turbulent

kinetic energy v′2/2 averaged over the cross-sectional area of the pipe, and Kk is

the turbulent kinetic energy (u′2 + v′2 + w′2)/2 averaged over the cross-sectional area
of the pipe, both defined in a manner similar to K; see (1.2). The wall-normal and

azimuthal turbulence components, v′2 and w′2, are difficult to measure accurately
at high Reynolds number. As such, both components were unavailable from the
Hultmark et al. (2010) and Morrison et al. (2004) data sets, and the azimuthal
component was unavailable from the Zhao & Smits (2007) data set. The magnitudes
of the missing components were therefore estimated by examining the scaling of

v′2/u′2 and w′2/u′2 in the data sets where these velocity components were available. It
was found that these ratios follow an inner scaling up to y+ < 100, and then increase
linearly from the value at y+ =100 to a nearly isotropic value at y/R = 1, allowing a

reasonable estimate of v′2 and w′2 from the known values of u′2.
As seen in figure 4, while Kv (and also Kw , not shown here) scale with 〈U〉2

over the entire range 4000 � ReD � 105, Kk only shows this dependence over a
somewhat narrower interval 15 000 � ReD � 105. There also appears to be an influence
of transition. The Princeton Superpipe flow features a relatively high transitional
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Figure 4. The scaled area-averaged variance Kv (a) and Kk (b) as a function of Reynolds
number. �, current data set; �, Morrison et al. (2004); �, Durst, Jovanovic & Sender (1995);
�, Wu & Moin (2008); ◦, Zhao & Smits (2007).

Reynolds number, with ReD,tr ≈ 104, compared to the value of 2300–3000 typically
observed in physical and numerical experiments. If we adopt ReD −ReD,tr as the most
appropriate Reynolds number, then the Superpipe data would be expected to shift
to the left, relevant to the other data. Hence, in the vicinity of transitional Reynolds
number, the streamwise component u′, which is dynamically ‘passive’ in that it
does not contribute significantly to the mixing and turbulence production processes,
dominates the scaling behaviour of total kinetic energy. This feature stresses the
importance of the y- and z-components of the velocity field in the transition observed
in the friction factor at ReD ≈ 105. Given these differences, we may expect universality
in pipe and channel flows only in the interval ReD � 104.

3. Analysis of Blasius scaling
Here we are interested in proposing a theory for the low-Reynolds-number range

ReD < 105 where we find K/〈U〉2 = const. Schumacher et al. (2007) showed that even at
relatively low Reynolds numbers (Rλ � 20) the moments of the velocity derivatives are
characterized by anomalous exponents identical to those observed in high-Reynolds-
number flows (Rλ → ∞). In other words, the smallest-scale dynamics of a flow with
Rλ � 20 are identical to that of a flow at Rλ → ∞. In addition, Bailey et al. (2009)
investigated small-scale properties of turbulence in a fully developed pipe flow in
the Princeton Superpipe. Remarkably, the results obtained in the strongly anisotropic
logarithmic region (at y/R ≈ 0.1) were identical to those obtained at the centerline of
the pipe where the flow is close to isotropic. Moreover, the results agreed extremely well
with well-resolved numerical simulations of isotropic and homogeneous turbulence
by Schumacher (2007) and Schumacher et al. (2007) and theoretical predictions by
Yakhot (2006). We infer that all conclusions of statistical theory of intermittent
turbulence, valid in the limit Re → ∞, can be used to describe anomalous exponents
of the moments of velocity derivatives in relatively low-Reynolds-number flows,
including wall flows, even where there is no evidence for the presence of an inertial
range. Hence, the inertial range is passive, its extent is unimportant, and the only
relevant large-scale parameter is the magnitude of the energy flux. If this is so, then
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the large-scale structures, isotropic or not, merely produce the flux of kinetic energy
dissipated at the close-to-isotropic dissipation scales.

We now apply these concepts to a fully developed turbulent channel flow of height
2h driven by a pressure gradient ∂p/∂x, where x is the streamwise direction and y is
the wall-normal direction measured from one wall. The Navier–Stokes equation for
a constant property fluid reduces to

dp

dx
=

d

dy

(
τxy + μ

dU

dy

)
, (3.1)

where τxy = −ρuxuy is the Reynolds stress. By integrating over the interval 0 � y � h

we find the stress at the wall:

τw = μ
∂U

∂y

∣∣∣∣
0

= h
dp

dx
= ρu2

∗.

A similar expression with R/2 instead of h is easily derived for the pipe flow. To
obtain the mean stress balance in the sublayer, we integrate (3.1) over the interval
0 � y � ys . Hence,

ys

h
+

τxy

τw

= 1 − μ

τw

∂U

∂y

∣∣∣∣
s

. (3.2)

Assuming (this will be tested below) that at the edge of sublayer where y = ys , the
viscous stress is negligibly small compared with the wall stress, and taking ys � h, we
obtain

τxy(ys) ≈ τw = ρu2
∗. (3.3)

Relation (3.3) is in quantitative agreement with results of numerical simulations of a
very low-Reynolds-number channel flow (h+ =180) by Boeck et al. (2010), who found
τxy(ys)/τw ≈ 0.75 at y = ys . The value slowly increases with Reynolds number so that
at h+ = 2000 the value exceeds 0.9 (Hoyas & Jiménez 2005, 2006). Hence, the stress
at the wall is approximately equal to the Reynolds stress at the edge of the sublayer
y = ys , where we can apply our knowledge of statistical turbulence theory.

Wall-bounded turbulence is often described in terms of a two-layer model, with
a region near the wall where viscosity is important, and an outer region where it is
not. We perceive the sublayer as a relatively slow, strongly intermittent flow, where
the turbulence is characterized by small-scale phenomena such as dissipation and
enstrophy, which are concentrated in close proximity to the wall. We also know
that in this region the turbulence production is approximately twice as large as the
dissipation rate (Kim, Moin & Moser 1987), with the balance released to the core
by the turbulent diffusion mechanism. The sublayer is dominated by thin (O(η))
and long (O(h)), unstable structures (low-speed streaks). It is well documented that
the formation of hair-pin vortices and their violent breakdown are responsible for
turbulence generation in the core. The O(h) length of these vortices is responsible for
the appearance of the global length h (equivalently, R or D) in (2.2) describing the
local dissipation scale η.

The turbulent velocity fluctuations in the near-wall region scale closely with u∗.
In pipe flows, this variation appears to be universal (Hultmark et al. 2010), while
in boundary layers and channels there is a slow variation with Reynolds number,
indicating a weak influence of the outer layer structures on the inner layer behaviour.
The breakdown of the streaks (bursts), emitted with a wall-normal component of
velocity ≈ u∗, reaches the proximity of the centerline y ≈ h with a time delay T ≈ h/u∗,
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treated here as an interaction time. This process resembles turbulence generation by
the plumes in a Bénard convection cell.

In the low-Reynolds-number range considered here, we assume that the interaction
between well-separated bursting structures can be neglected. It is this localization that
is the main cause of strong intermittency of turbulence production (Lee et al. 2004).
The momentum exchange for an individual burst is 2ρΩ(〈U〉 − au∗), where Ω is the
mean volume of a single bursting structure, and au∗ is the characteristic x-component
of its velocity. Thus, defining the mean total number N of these structures and using
the estimated interaction time, the total stress acting on an interface of area S at
y ≈ ys is

τxy(ys) ≈ 2NρΩ(〈U〉 − au∗)u∗

Sh
≈ ρu2

∗. (3.4)

Because 2Sh = V is the entire volume, we define γ ≡ NΩ/V as the volume fraction
of the flow occupied by the dissipating (bursting) structures. The parameter γ can
be understood as a conditional probability of a dissipation structure (dissipation
scale) formed as a result of an intermittent instability of a sublayer. A possible
interpretation is that both the integral and the dissipation scales in wall flows are
simultaneously formed by this instability, and then fill the bulk flow with turbulent
velocity fluctuations. In the low-Reynolds-number flows we are interested in here, a
limited range of intermediate scales can be generated in the core as a result of a
convolution or secondary instability of the emitted thin and long structures. We would
like to stress that, because according to our data (see figure 1 and expression (2.2)),
the thickness of sublayer is ys = O(1/R∗), no scale smaller than ys can be generated
in the outer region of the flow.

To assess the magnitude of the constant a, we note that τxy(ys) = −ρu′v′ ≈
ρu′

rmsv
′
rmsγ , where γ is the conditional probability (dimensionless) of the bursting

events. Taking into account that, according to our experimental data, u′
rms ∝ 〈U〉

(with u′
rms/〈U〉 � 1), and comparing this estimate with expression (3.4), we conclude

that au∗/〈U〉 � 1. Hence,

γ 〈U〉 ∝ u∗ ∝
√
λ〈U〉. (3.5)

The parameter γ can be found from the theory of intermittency (for example, see
Frisch 1995). It has been shown that

Re−d2E2 ≈
(

η

L

)μ

E2 ≈ E2
, (3.6)

with anomalous dimension d2 ≈ 0.157. Numerical simulations of low-Reynolds-
number isotropic turbulence gave d2 ≈ 0.152 (Schumacher et al. 2007). The ratio
γ ≈ (η/L)μ is exactly the parameter we are looking for. In relation (3.6), derived for
isotropic turbulence, the Reynolds number is Re = u0

rmsL/ν, where L is the integral
length scale. In the case of a sublayer, u0

rms = vrms ≈ u∗ and the integral scale L =h, so
that in relation (3.6) Re = R∗ and, as we saw earlier η ∝ 1/R∗, giving μ = d2. Thus,

γ ∝
(

η

h

)d2

∝ R−d2
∗ . (3.7)

Taking into account that
√
λ ∝ u∗/U ≈ R∗/Reh, we obtain

λ ∝ γ 2 ∝ R−2d2
∗ (3.8)
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and, because

λ ≈ R−2d2
∗ ≈

(
R∗

Reh

)2

,

we find that the two Reynolds numbers are related according to Reh ≈ Re
1+d2
∗ , so that

λ ∝ Re−θ
h (3.9)

with θ = 2d2/(1 + d2). Hence, θ ≈ 0.27 and 0.26 for d2 = 0.157 and d2 = 0.152 (the
values given by Schumacher et al. 2007), respectively, which are very close to the
Blasius value θ = 1/4. An entirely similar result can be obtained for pipe flow.

We can also estimate the Reynolds number range over which our model may be
valid. It was assumed that the emitted structures reach the proximity of the centerline
relatively undistorted on the time scale T ≈ h/u∗. On the way, these thin and long
entities will be dissipated by diffusion on a time scale Td ≈ y2

s /ν, so that they can
reach the centerline only if T <Td , or

h

u∗
<

y2
s

ν
,

so that

R∗ < (y+
s )2. (3.10)

For y+
s ≈ 20−50, this gives the upper bound for the validity of the scaling arguments

considered here as R∗ < 400–2500, which corresponds well with the range of Blasius
scaling seen in experiments.

We would like to stress that the model developed here is based entirely on a detailed
consideration of the dissipative structures in a manner described by Schumacher et al.
(2007). No assumptions regarding the spectra were necessary.
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